Problem 3.14
Prove any
$$a_n \in \mathbb{R}$$
 has a monotonic subsequence.
Proof: (1) Assume $\exists a_{n_k}$ with no least term.
Lat $k_1 = 1$, so $a_{n_k} = a_n$.
Since a_{n_k} does not have a least term,
 $\exists k_2 > k_1 \cdot s \cdot t \cdot a_{n_k} > a_{n_{k_2}}$
Similarly $\exists k_3 > k_2 > k_1$, $s \cdot t \cdot a_{n_k} > a_{n_{k_2}} > a_{n_{k_3}}$
So, a_{n_k} has a subsequence $a_{n_{k_1}}$ that
is decreasing, and it is also a subsequence
of a_n .
(2) Assume every a_{n_k} has a least term.
Let $n_1 \quad s \cdot t \cdot a_{n_1} \leq a_n \quad \forall n \in \mathbb{N}$.
Let $n_2 \quad s \cdot t \cdot a_{n_2} \leq a_n \quad \forall n > n_1$
Let $n_3 \quad s \cdot t \cdot a_{n_3} \leq a_n \quad \forall n > n_2$.
As a result, $a_{n_1} \leq a_{n_2} \leq a_{n_3} \leq \cdots = D$

$$\frac{\text{Problem 4.8}}{f: E \mapsto E}, \quad f(x) = x \cdot \forall x \in E.$$

$$\text{Prove f is uniformly continuous for any E}.$$

$$\frac{\text{proof.}}{f: Let \in >0}, \quad Let \quad S = E.$$

$$\text{if } d(x,y) < \delta, \quad d(f(x), f(y))$$

$$= d(x,y) < \delta = E.$$

Problem 4.16

$$f: E \mapsto E'$$
 continuous, one-to-one onto
 E compact $\Rightarrow f': E' \mapsto E$ continuous.

prof: Recall that
$$f$$
 continuous \Leftrightarrow
 $f^{-1}(U')$ is open for any U' open.
So, we want to show that
 $(f^{-1})^{-1}(U)$ is open for any U open.

Since
$$f$$
 is one-to-one open,
 $(f^{-1})^{-1}(U) = f(U)$
Indeed, $f(U) = f y \in E': y = f(x)$ for some $x \in U$,
 $(f^{-1})^{-1}(U) = \{y \in E': f^{-1}(y) \in U\}$.
Let $y \in (f^{-1})^{-1}(U)$, $f^{-1}(y) \in U$
 $\Rightarrow f(f^{-1}(y)) = y \in f(U)$.
Let $y \in f(U)$, for some $x \in U$
 $\Rightarrow f^{-1}(y) = f^{-1}(f(x)) = x \in U$
 $\Rightarrow y \in (f^{-1})^{-1}(U)$.

Let
$$U \subseteq E$$
 open, then \overline{U} is closed.
Since $\int \overline{U} \subseteq E$ closed
 $I \in \overline{IS}$ compact
 $\Rightarrow \overline{U}$ is compact.
 $\Rightarrow f(\overline{U})$ is also compact.
 $\Rightarrow f(\overline{U})$ is closed in E

Nho-tr-nho

ontro

Since
$$f(u) \perp f(\bar{u}) = E'$$

 $f(\bar{u})$ is closed
 \Rightarrow $f(u)$ is open. \Box

Example
(1)
$$f(x,y) = \int \frac{xy^2}{x^2 + y^2}$$
, $(x,y) \neq (0,0)$
(1) $f(x,y) = \int \frac{xy^2}{x^2 + y^2}$, $(x,y) \neq (0,0)$
(1) $f(x,y) = \int \frac{xy^2}{x^2 + y^2}$, $(x,y) \neq (0,0)$
(2) $f(x,y) = (0,0)$.

Problem 4.21

$$S \subset E$$
, $\overline{S} = f \times \notin S : \times is$ a cluster
point of $S \}$.
 $f : S \mapsto E'$, E' complete.
 f is uniformly continuous.
Prove f can be extended to E and
result in a continuous function.

proof: Let
$$C \in S$$
, since c is a
cluster point of S . $\forall n \in \mathbb{N}$, $\exists Sn \in S$
 $s.t.$ $d(c, sn) < n$, then $Sn \rightarrow C$.
To show $f(x) = \lim_{n \to \infty} f(Sn)$, we need to
show $f(Sn)$ is Cauchy since E' is
complete.
Let $E > 0$, $Since f$ is continuous.
 $\exists d > 0$, $s.t$.
 $d(Sn, Sm) < d \Rightarrow d(f(Sn), f(Sm)) < \varepsilon$.
Let $N = \frac{2}{5}$, if $m, n > N$, then
 $d(Sm, Sn) \leq d(x, Sm) + d(x, Sn)$
 $< \frac{1}{m} + \frac{1}{n} < \frac{5}{2} + \frac{5}{2} = \delta$
 $\Rightarrow d(f(Sm), f(Sn)) > \varepsilon$.
Thus, $f(Sn)$ is (auchy. So, $\exists f(x) \in E'$
Such that $\lim_{n > \infty} f(Sn) = f(x)$. (E' is complete)
 $\Rightarrow f(x)$ can be extended to ε .

Now, we want to show that the extended f is uniformly continuous in E. We need to cover three cases below. <u>Case 1</u>: $\overline{S} = \emptyset$. Then f' = f and E = S. Since f is uniformly continuous in S, So cloes f. <u>Case 2</u>: \overline{S} has only one element. Let $\overline{S} = \overline{d}C$?. Let $Sn \rightarrow C$, as proved before, f(Sn) is Cauchy. By construction, we know that f(Sn) $\rightarrow f'(c)$. So, f' is continuous at C So, let E>0. = S, >0, s.t. d(x,c)<5. \Rightarrow d(f(a), f(c)) < ε . On the other hand, Since f is uniformly continuous in S. 30270, s.t. d(x,y)<02, x,yes \Rightarrow dif(x), f(y)) < δ_2 . Now, select J=mind Ji, Jz}. Vx, y E E.

$$\delta(x,y) < \delta \rightarrow d(f(x), f(y)) < \varepsilon$$
 if
x,y $\varepsilon s < \varepsilon$. $d(f(x), f(y)) = d(f'(x), f(c)) < \varepsilon$
if $y = c$.

Case 3. 5 has at least two elements
Let
$$f(x) = \lim_{n \to \infty} f(a_n)$$
, $f(y) = \lim_{n \to \infty} f(b_n)$.
Let $\varepsilon > 0$, since $f'(x) = \lim_{n \to \infty} f(a_n)$
 $\exists N_1 > 0$, s.t. $n > N_1 \Rightarrow d(f'(x), f(a_n)) < \frac{\varepsilon}{3}$
Let $d(x, a_n) = \frac{1}{n}$. this is equivalent to
 $\exists \delta_1 = \frac{1}{N_1} > 0$, s.t. $d(x, a_n) < \delta_1 \Rightarrow d(f(x), f(a_n)) < \frac{\varepsilon}{3}$.
Similarly, since $f'(y) = \lim_{n \to \infty} f(b_n)$
 $\exists \delta_2 = \frac{1}{N_2} > 0$, s.t. $d(y, b_n) < \delta_2 \Rightarrow d(f(y), f(b_n)) < \frac{\varepsilon}{3}$.
Since f is uniformly continuous in S,
 $\exists \delta_3 > 0$, s.t. $d(a_n, b_n) < \delta_3 \Rightarrow d(f(a_n), f(b_n)) < \frac{\varepsilon}{3}$.
Now, select $\delta = \min \{\frac{\delta_1}{3}, \frac{\delta_2}{3}, \frac{\delta_3}{3}\}$, then $N = \lceil \frac{\delta}{3} \rceil$.

$$\begin{array}{l} \textcircledleft 0 \quad d(x, a_n) < \sigma = \frac{1}{N} < \frac{1}{N_2} = \sigma_1 \\ \textcircledleft 0 \quad d(y, b_n) < \sigma = \frac{1}{N} < \frac{1}{N_2} = \sigma_2 \\ \textcircledleft 0 \quad d(x,y) < \sigma \Rightarrow d(a_n, b_n) < d(a_n, x) + d(x,y) + d(y, b_n) \\ < \frac{1}{N} + \sigma + \frac{1}{N} \\ < \frac{\sigma_3}{3} + \frac{\sigma_3}{3} + \frac{\sigma_3}{3} \\ < \sigma_3 \\ \end{matrix}left 0 \\ \end{matrix}left 0 \\ \end{matrix}left 0 \\ \end{matrix}left 0 \\ \rleft 0$$